enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For even dimensions n = 2k, the n eigenvalues λ of a proper rotation occur as pairs of complex conjugates which are roots of unity: λ = e ±iθ j for j = 1, ..., k, which is real only for λ = ±1. Therefore, there may be no vectors fixed by the rotation (λ = 1), and thus no axis of rotation. Any fixed eigenvectors occur in pairs, and the ...

  5. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The cross product of two vectors u and v would be represented as: By some conventions (e.g. in France and in some areas of higher mathematics), this is also denoted by a wedge, [ 12 ] which avoids confusion with the wedge product since the two are functionally equivalent in three dimensions: u ∧ v {\displaystyle \mathbf {u} \wedge \mathbf {v} }

  8. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    When the meaning depends on the syntax, a symbol may have different entries depending on the syntax. For summarizing the syntax in the entry name, the symbol is used for representing the neighboring parts of a formula that contains the symbol. See § Brackets for examples of use. Most symbols have two printed versions.

  9. Künneth theorem - Wikipedia

    en.wikipedia.org/wiki/Künneth_theorem

    The map from the sum to the homology group of the product is called the cross product. More precisely, there is a cross product operation by which an i -cycle on X and a j -cycle on Y can be combined to create an ( i + j ) {\displaystyle (i+j)} -cycle on X × Y {\displaystyle X\times Y} ; so that there is an explicit linear mapping defined from ...