Search results
Results from the WOW.Com Content Network
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
In mathematics, the conjugate of an expression of the form + is , provided that does not appear in a and b.One says also that the two expressions are conjugate. In particular, the two solutions of a quadratic equation are conjugate, as per the in the quadratic formula =.
In mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that =. This is an equivalence relation whose equivalence classes are called conjugacy classes .
A complex number is real if and only if it equals its own conjugate. The unary operation of taking the complex conjugate of a complex number cannot be expressed by applying only their basic operations addition, subtraction, multiplication and division. Argument φ and modulus r locate a point in the complex plane.
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element α, over a field extension L/K, are the roots of the minimal polynomial p K,α (x) of α over K. Conjugate elements are commonly called conjugates in contexts where this is not ambiguous.
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of + being , for real numbers and ).
Conjugate transpose, the complex conjugate of the transpose of a matrix; Harmonic conjugate in complex analysis; Conjugate (graph theory), an alternative term for a line graph, i.e. a graph representing the edge adjacencies of another graph; In group theory, various notions are called conjugation: Inner automorphism, a type of conjugation ...
In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]