Search results
Results from the WOW.Com Content Network
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization).
Comparing this equation to equation , it follows immediately that a left eigenvector of is the same as the transpose of a right eigenvector of , with the same eigenvalue. Furthermore, since the characteristic polynomial of A T {\displaystyle A^{\textsf {T}}} is the same as the characteristic polynomial of A {\displaystyle A} , the left and ...
In mathematics, the graph Fourier transform is a mathematical transform which eigendecomposes the Laplacian matrix of a graph into eigenvalues and eigenvectors. Analogously to the classical Fourier transform , the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis .
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.
It is exactly the same formula as in the power method, except replacing the matrix by (). The closer the approximation μ {\displaystyle \mu } to the eigenvalue is chosen, the faster the algorithm converges; however, incorrect choice of μ {\displaystyle \mu } can lead to slow convergence or to the convergence to an eigenvector other than the ...