Search results
Results from the WOW.Com Content Network
The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum: + + + + = This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2: (+)
Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6 n + 1 produces the same primes as 3 n + 1, while 6 n + 5 produces the same as 3 n + 2 except for the only even prime 2.
Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test. One can also use this technique to prove Abel's test: If is a convergent series, and a bounded monotone sequence, then = = converges. Proof of Abel's test.
A rigorous proof of these formulas and Faulhaber's assertion that such formulas would exist for all odd powers took until Carl Jacobi , two centuries later. Jacobi benefited from the progress of mathematical analysis using the development in infinite series of an exponential function generating Bernoulli numbers.
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...
The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form ), as well as a proof that this sum is correct. Euler found the exact sum to be π 2 / 6 {\displaystyle \pi ^{2}/6} and announced this discovery in 1735.
Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem. A 2016 paper by Bloom [4] proved that if {,..
Here, the prime on the summation indicates that the last term of the sum must be multiplied by 1/2 when x is an integer. The integral is not a convergent Lebesgue integral ; it is understood as the Cauchy principal value .