Search results
Results from the WOW.Com Content Network
Mathematical constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then ...
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.
For example, on the International Space Station the Earth's gravity is nearly 90% as strong as at the surface. Objects orbiting in space would not remain in orbit if not for the gravitational force, and gravitational fields extend even into the depths of intergalactic space. [5] [6] [7] The dark side of the Moon illuminated by the Sun.
Mathematicians study and research in all the different areas of mathematics. The publication of new discoveries in mathematics continues at an immense rate in hundreds of scientific journals, many of them devoted to mathematics and many devoted to subjects to which mathematics is applied (such as theoretical computer science and theoretical ...
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
For an object in uniform circular motion, the net force acting on the object equals: [46] = ^, where is the mass of the object, is the velocity of the object and is the distance to the center of the circular path and ^ is the unit vector pointing in the radial direction outwards from the center. This means that the net force felt by the object ...