Search results
Results from the WOW.Com Content Network
Example 2: a function f is uniformly continuous on the semi-open interval [0,∞) if and only if it is continuous at the standard points of the interval, and in addition, the natural extension f* is microcontinuous at every positive infinite hyperreal point. Example 3: similarly, the failure of uniform continuity for the squaring function
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.
Limits can be difficult to compute. There exist limit expressions whose modulus of convergence is undecidable. In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests.
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]
The minimum value of for which there exists < < such that these constraints are satisfied is =. This construction, along with the proof that the function is not differentiable over any interval, was first delivered by Weierstrass in a paper presented to the Königliche Akademie der Wissenschaften on 18 July 1872.
A functor G : C → D is said to lift limits for a diagram F : J → C if whenever (L, φ) is a limit of GF there exists a limit (L′, φ′) of F such that G(L′, φ′) = (L, φ). A functor G lifts limits of shape J if it lifts limits for all diagrams of shape J. One can therefore talk about lifting products, equalizers, pullbacks, etc.
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...