Search results
Results from the WOW.Com Content Network
The planet Jupiter is a slight oblate spheroid with a flattening of 0.06487. The oblate spheroid is the approximate shape of rotating planets and other celestial bodies, including Earth, Saturn, Jupiter, and the quickly spinning star Altair. Saturn is the most oblate planet in the Solar System, with a flattening of 0.09796. [6]
The oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. It is the regular geometric shape that most nearly approximates the shape of the Earth.
The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.
A Maclaurin spheroid is an oblate spheroid which arises when a self-gravitating fluid body of uniform density rotates with a constant angular velocity. This spheroid is named after the Scottish mathematician Colin Maclaurin, who formulated it for the shape of Earth in 1742. [1]
Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length. Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution.
A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution ( spheroid ) respectively.
as the shape of the geoid, the mean sea level of the world ocean; or; as the shape of Earth's land surface as it rises above and falls below the sea. As the science of geodesy measured Earth more accurately, the shape of the geoid was first found not to be a perfect sphere but to approximate an oblate spheroid, a specific type of ellipsoid.
Fixed to the vertical rod is a spring metal band. When stationary the spring metal band is circular in shape. The top of the metal band can slide along the vertical rod. When spun, the spring-metal band bulges at its equator and flattens at its poles in analogy with the Earth.