enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The planet Jupiter is a slight oblate spheroid with a flattening of 0.06487. The oblate spheroid is the approximate shape of rotating planets and other celestial bodies, including Earth, Saturn, Jupiter, and the quickly spinning star Altair. Saturn is the most oblate planet in the Solar System, with a flattening of 0.09796. [6]

  3. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    The oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. It is the regular geometric shape that most nearly approximates the shape of the Earth.

  4. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.

  5. Maclaurin spheroid - Wikipedia

    en.wikipedia.org/wiki/MacLaurin_spheroid

    A Maclaurin spheroid is an oblate spheroid which arises when a self-gravitating fluid body of uniform density rotates with a constant angular velocity. This spheroid is named after the Scottish mathematician Colin Maclaurin, who formulated it for the shape of Earth in 1742. [1]

  6. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length. Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution.

  7. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution ( spheroid ) respectively.

  8. Spherical Earth - Wikipedia

    en.wikipedia.org/wiki/Spherical_Earth

    as the shape of the geoid, the mean sea level of the world ocean; or; as the shape of Earth's land surface as it rises above and falls below the sea. As the science of geodesy measured Earth more accurately, the shape of the geoid was first found not to be a perfect sphere but to approximate an oblate spheroid, a specific type of ellipsoid.

  9. Equatorial bulge - Wikipedia

    en.wikipedia.org/wiki/Equatorial_bulge

    Fixed to the vertical rod is a spring metal band. When stationary the spring metal band is circular in shape. The top of the metal band can slide along the vertical rod. When spun, the spring-metal band bulges at its equator and flattens at its poles in analogy with the Earth.