Search results
Results from the WOW.Com Content Network
One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [ 4 ] [ 5 ]
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
The conversion for the poundal is given by 1 pdl = 1 lb·ft/s 2 = 0.138 254 954 376 N (precisely). [1] To convert between the absolute and gravitational FPS systems one needs to fix the standard acceleration g which relates the pound to the pound-force. [citation needed] =
Since a pound of force (pound force) accelerates a pound of mass at 32.174 049 ft/s 2 (9.80665 m/s 2; the acceleration of gravity, g), we can scale down the unit of force to compensate, giving us one that accelerates 1 pound mass at 1 ft/s 2 rather than at 32.174 049 ft/s 2; and that is the poundal, which is approximately 1 ⁄ 32 pound force.
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
Nm lb.ft; Non-SI metric: kilogram metre: kg.m kg⋅m 1.0 kg⋅m (9.8 N⋅m; 7.2 lb⋅ft) kg.m Nm; kg.m lb.ft; Imperial & US customary: pound force-foot: lb.ft lb⋅ft 1.0 lb⋅ft (1.4 N⋅m) lb.ft Nm; lb.ft kg-m; Scientific: SI: newton-metre: N.m N⋅m Triple combinations are also possible. See the full list. 1.0 N⋅m (0.74 lbf⋅ft) N.m kgf.m ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2). This value was established by the third General Conference on Weights and Measures (1901, CR 70) and used to define the standard weight of an object as the product of its mass and this nominal acceleration .