Ads
related to: real world example of integers problems pdfkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
In the static predecessor problem, the set of elements does not change, but in the dynamic predecessor problem, insertions into and deletions from the set are allowed. [ 1 ] The predecessor problem is a simple case of the nearest neighbor problem, and data structures that solve it have applications in problems like integer sorting .
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.
For example, x²-6 is a polynomial with integer coefficients, since 1 and -6 are integers. The roots of x²-6=0 are x=√6 and x=-√6, so that means √6 and -√6 are algebraic numbers.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Cobweb plot of the orbit 10 → 5 → 8 → 4 → 2 → 1 → ... in an extension of the Collatz map to the real line. The Collatz map can be extended to the real line by choosing any function which evaluates to x / 2 {\displaystyle x/2} when x {\displaystyle x} is an even integer, and to either 3 x + 1 {\displaystyle 3x+1} or ( 3 x + 1 ) / 2 ...
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
The problem asks if it is possible to color each of the positive integers either red or blue, so that no Pythagorean triple of integers a, b, c, satisfying + = are all the same color. For example, in the Pythagorean triple 3, 4, and 5 ( 3 2 + 4 2 = 5 2 {\displaystyle 3^{2}+4^{2}=5^{2}} ), if 3 and 4 are colored red, then 5 must be colored blue.
Ads
related to: real world example of integers problems pdfkutasoftware.com has been visited by 10K+ users in the past month