Search results
Results from the WOW.Com Content Network
The yeast deletion project, formally the Saccharomyces Genome Deletion Project, is a project to create data for a near-complete collection of gene-deletion mutants of the yeast Saccharomyces cerevisiae. Each strain carries a precise deletion of one of the genes in the genome. This allows researchers to determine what each gene does by comparing ...
Synthetic genetic array analysis is generally conducted using colony arrays on petriplates at standard densities (96, 384, 768, 1536). To perform a SGA analysis in S.cerevisiae, the query gene deletion is crossed systematically with a deletion mutant array (DMA) containing every viable knockout ORF of the yeast genome (currently 4786 strains). [9]
A classical strategy for generating gene deletion variants is based on double cross-integration of non-replicating vectors into the genome. Furthermore, recombination systems such as Cre-lox are widely used, mostly in eukaryotes. The versatile properties of Cre recombinase make it ideal for use in many genetic engineering strategies.
In genetics, Flp-FRT recombination is a site-directed recombination technology, increasingly used to manipulate an organism's DNA under controlled conditions in vivo.It is analogous to Cre-lox recombination but involves the recombination of sequences between short flippase recognition target (FRT) sites by the recombinase flippase (Flp) derived from the 2 μ plasmid of baker's yeast ...
This technique can be used in a variety of organisms, including bacteria, yeast, plants, and animals, and it allows scientists to study the function of specific genes by observing the effects of their absence. CRISPR-based gene knockout is a powerful tool for understanding the genetic basis of disease and for developing new therapies.
In yeast, deletion strains are frequently used to assess protein stability over time with cycloheximide chases. For example, yeast strains lacking critical degradation machinery such as chaperones, E3 ligases, and vacuolar proteins are often used to determine the mechanism of degradation for a protein substrate of interest.
In yeast cells, the principal targets are GAL1 (galactokinase), GAL10 (UDP-glucose 4-epimerase), and GAL7 (galactose-1-phosphate uridylyltransferase), three enzymes required for galactose metabolism. This binding has also proven useful in constructing the GAL4/UAS system , a technique for controlling expression in insects. [ 3 ]
This gene article is a stub. You can help Wikipedia by expanding it.