enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    In ZF, a set is infinite if and only if the power set of its power set is a Dedekind-infinite set, having a proper subset equinumerous to itself. [4] If the axiom of choice is also true, then infinite sets are precisely the Dedekind-infinite sets. If an infinite set is a well-orderable set, then it has many well-orderings which are non-isomorphic.

  3. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also. As a consequence, the cardinality of the real numbers , which is the same as that of the power set of the integers , is strictly larger than the cardinality of the integers; see Cardinality of the ...

  4. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:

  5. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    2. A Dedekind-infinite set is a set that can be put into a one-to-one correspondence with one of its proper subsets, indicating a type of infinity; a Dedekind-finite set is a set that is not Dedekind-infinite. (These are also spelled without the hyphen, as "Dedekind finite" and "Dedekind infinite".) def The set of definable subsets of a set ...

  6. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    Any set can be given the cofinite topology in which the open sets are the empty set and the sets whose complement is finite. This is the smallest T 1 topology on any infinite set. Any set can be given the cocountable topology, in which a set is defined as open if it is either empty or its complement is countable. When the set is uncountable ...

  7. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    Von Neumann cardinal assignment implies that the cardinal number of a finite set is the common ordinal number of all possible well-orderings of that set, and cardinal and ordinal arithmetic (addition, multiplication, power, proper subtraction) then give the same answers for finite numbers. However, they differ for infinite numbers.

  8. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    The existence of infinite, Dedekind-finite sets was studied by Bertrand Russell and Alfred North Whitehead in 1912; these sets were at first called mediate cardinals or Dedekind cardinals. With the general acceptance of the axiom of choice among the mathematical community, these issues relating to infinite and Dedekind-infinite sets have become ...

  9. Element (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Element_(mathematics)

    In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets.