enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.

  4. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed. The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  5. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

  6. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.

  7. List of hyperboloid structures - Wikipedia

    en.wikipedia.org/wiki/List_of_hyperboloid_structures

    Hyperbolic paraboloid saddle roof on train station Church Army Chapel, Blackheath: 1963 Blackheath, south east London United Kingdom: Hyperbolic paraboloid saddle roof on church E.T. Spashett: Kobe Port Tower: 1963 Kōbe Japan: Hyperboloid observation tower 108 m (354 ft) Nikken Sekkei Company: Saint Louis Science Center's James S. McDonnell ...

  8. Beltrami–Klein model - Wikipedia

    en.wikipedia.org/wiki/Beltrami–Klein_model

    Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection. In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit ...

  9. Hyperboloid structure - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_structure

    Hyperbolic structures have a negative Gaussian curvature, meaning they curve inward rather than curving outward or being straight. As doubly ruled surfaces , they can be made with a lattice of straight beams, hence are easier to build than curved surfaces that do not have a ruling and must instead be built with curved beams.