Search results
Results from the WOW.Com Content Network
By comparison, annealed type 316 stainless steel has a density of 8000 kg/m 3, modulus of 193 GPa, and tensile strength of 570 MPa. [23] Tempered 6061 aluminium alloy has a density of 2700 kg/m 3, modulus of 69 GPa, and tensile strength of 310 MPa, respectively. [24] Ti-6Al-4V standard specifications include: [25] [26]
Commercially pure (99.2% pure) grades of titanium have ultimate tensile strength of about 434 MPa (63,000 psi), equal to that of common, low-grade steel alloys, but are less dense. Titanium is 60% denser than aluminium, but more than twice as strong [16] as the most commonly used 6061-T6 aluminium alloy.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Typical values of the limit for steels are one half the ultimate tensile strength, to a maximum of 290 MPa (42 ksi).For iron, aluminium, and copper alloys, is typically 0.4 times the ultimate tensile strength.
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
For ductile materials, the yield strength is typically distinct from the ultimate tensile strength, which is the load-bearing capacity for a given material. The ratio of yield strength to ultimate tensile strength is an important parameter for applications such steel for pipelines , and has been found to be proportional to the strain hardening ...
To emphasize the point, consider the issue of choosing a material for building an airplane. Aluminum seems obvious because it is "lighter" than steel, but steel is stronger than aluminum, so one could imagine using thinner steel components to save weight without sacrificing (tensile) strength.
Maraging steels are usually described by a number (e.g., SAE steel grades 200, 250, 300 or 350), which indicates the approximate nominal tensile strength in thousands of pounds per square inch (ksi); the compositions and required properties are defined in US military standard MIL-S-46850D. [9]