Search results
Results from the WOW.Com Content Network
Pseudocode is commonly used in textbooks and scientific publications related to computer science and numerical computation to describe algorithms in a way that is accessible to programmers regardless of their familiarity with specific programming languages.
At the end of this process, if the sequence has a majority, it will be the element stored by the algorithm. This can be expressed in pseudocode as the following steps: Initialize an element m and a counter c with c = 0; For each element x of the input sequence: If c = 0, then assign m = x and c = 1; else if m = x, then assign c = c + 1; else ...
In the Java remote method invocation (Java RMI) nomenclature, a stub communicates on the client-side with a skeleton on the server-side. [1] A class skeleton is an outline of a class that is used in software engineering. It contains a description of the class's roles, and describes the purposes of the variables and methods, but does not ...
Illustration of the dining philosophers problem. Each philosopher has a bowl of spaghetti and can reach two of the forks. In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them.
In this abstract framework, there are no resource limitations on the amount of memory or time required for the program's execution; it can take arbitrarily long and use an arbitrary amount of storage space before halting. The question is simply whether the given program will ever halt on a particular input. For example, in pseudocode, the program
In the following pseudocode, dist is an array that contains the current distances from the source to other vertices, i.e. dist[u] is the current distance from the source to the vertex u. The prev array contains pointers to previous-hop nodes on the shortest path from source to the given vertex (equivalently, it is the next-hop on the path from ...
In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete. Moreover, some restricted variants of it are NP-complete too, for example: [1]
A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).