Search results
Results from the WOW.Com Content Network
A minor of an undirected graph G is any graph that may be obtained from G by a sequence of zero or more contractions of edges of G and deletions of edges and vertices of G.The minor relationship forms a partial order on the set of all distinct finite undirected graphs, as it obeys the three axioms of partial orders: it is reflexive (every graph is a minor of itself), transitive (a minor of a ...
A shallow minor of a graph G is a minor in which the edges of G that were contracted to form the minor form a collection of disjoint subgraphs with low diameter. Shallow minors interpolate between the theories of graph minors and subgraphs, in that shallow minors with high depth coincide with the usual type of graph minor, while the shallow ...
The University of Wisconsin Oshkosh (UW Oshkosh or UWO) is a public university in Oshkosh, Wisconsin, United States. It is part of the University of Wisconsin System and offers bachelor's, master's, and doctoral degree programs to around 13,000 students each year.
Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n.A k × k minor of A, also called minor determinant of order k of A or, if m = n, the (n − k) th minor determinant of A (the word "determinant" is often omitted, and the word "degree" is sometimes used instead of "order") is the determinant of a k × k matrix obtained from A by deleting m − k rows and n − k columns.
Graph minor Diestel (2000), [1] p. 107: Outer 1-planar graphs: Six forbidden minors Graph minor Auer et al. (2013) [2] Graphs of fixed genus: A finite obstruction set Graph minor Diestel (2000), [1] p. 275: Apex graphs: A finite obstruction set Graph minor [3] Linklessly embeddable graphs: The Petersen family: Graph minor [4] Bipartite graphs ...
Neil Robertson and Paul Seymour, for the Robertson–Seymour theorem showing that graph minors form a well-quasi-ordering. [35] [33] 2009: Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas, for the strong perfect graph theorem. [36] [37] Daniel A. Spielman and Shang-Hua Teng, for smoothed analysis of linear programming algorithms ...
He is Professor Emeritus of Philosophy at the University of Western Ontario in Canada. His research includes such topics as set theory, model theory, lattice theory, modal logic, quantum logic, constructive mathematics, type theory, topos theory, infinitesimal analysis, spacetime theory, and the philosophy of mathematics. He is the author of ...
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem".