Search results
Results from the WOW.Com Content Network
The yeast deletion project, formally the Saccharomyces Genome Deletion Project, is a project to create data for a near-complete collection of gene-deletion mutants of the yeast Saccharomyces cerevisiae. Each strain carries a precise deletion of one of the genes in the genome. This allows researchers to determine what each gene does by comparing ...
Synthetic genetic array analysis is generally conducted using colony arrays on petriplates at standard densities (96, 384, 768, 1536). To perform a SGA analysis in S.cerevisiae, the query gene deletion is crossed systematically with a deletion mutant array (DMA) containing every viable knockout ORF of the yeast genome (currently 4786 strains). [9]
Gene knockout by mutation is commonly carried out in bacteria. An early instance of the use of this technique in Escherichia coli was published in 1989 by Hamilton, et al. [2] In this experiment, two sequential recombinations were used to delete the gene.
This method enables researchers to take a snapshot of the translatome, showing which parts of the mRNA are being translated into proteins by ribosomes at a given time. Ribosome profiling provides valuable insights into translation dynamics, revealing the complex interplay between gene sequence, mRNA structure, and translation regulation.
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
The GTEx project is a human genetics project aimed at understanding the role of genetic variation in shaping variation in the transcriptome across tissues. The project has collected a variety of tissue samples (> 50 different tissues) from more than 700 post-mortem donors. This has resulted in the collection of >11,000 samples.
In yeast, deletion strains are frequently used to assess protein stability over time with cycloheximide chases. For example, yeast strains lacking critical degradation machinery such as chaperones, E3 ligases, and vacuolar proteins are often used to determine the mechanism of degradation for a protein substrate of interest.
Traditional methods of genetic engineering generally insert the new genetic material randomly within the host genome. This can impair or alter other genes within the organism. Methods were developed that inserted the new genetic material into specific sites within an organism genome.