Search results
Results from the WOW.Com Content Network
Naively, we can simulate the trajectory of the reaction chamber by discretizing time, then simulate each time-step. However, there might be long stretches of time where no reaction occurs. The Gillespie algorithm samples a random waiting time until some reaction occurs, then take another random sample to decide which reaction has occurred.
Based on this, the connectivity between two data points, and , can be defined as the probability of walking from to in one step of the random walk. Usually, this probability is specified in terms of a kernel function of the two points: k : X × X → R {\displaystyle k:X\times X\rightarrow \mathbb {R} } .
Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [1]Realizations of these random variables are generated and inserted into a model of the system.
Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line. Effect of a scale parameter over a mixture of two normal probability distributions. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only ...
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
which is the probability of being in state and at times and + respectively given the observed sequence and parameters . The denominators of γ i ( t ) {\displaystyle \gamma _{i}(t)} and ξ i j ( t ) {\displaystyle \xi _{ij}(t)} are the same ; they represent the probability of making the observation Y {\displaystyle Y} given the parameters θ ...