enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gillespie algorithm - Wikipedia

    en.wikipedia.org/wiki/Gillespie_algorithm

    Naively, we can simulate the trajectory of the reaction chamber by discretizing time, then simulate each time-step. However, there might be long stretches of time where no reaction occurs. The Gillespie algorithm samples a random waiting time until some reaction occurs, then take another random sample to decide which reaction has occurred.

  3. Diffusion map - Wikipedia

    en.wikipedia.org/wiki/Diffusion_map

    Based on this, the connectivity between two data points, and , can be defined as the probability of walking from to in one step of the random walk. Usually, this probability is specified in terms of a kernel function of the two points: k : X × X → R {\displaystyle k:X\times X\rightarrow \mathbb {R} } .

  4. Sample entropy - Wikipedia

    en.wikipedia.org/wiki/Sample_entropy

    Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...

  5. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [1]Realizations of these random variables are generated and inserted into a model of the system.

  6. Scale parameter - Wikipedia

    en.wikipedia.org/wiki/Scale_parameter

    Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line. Effect of a scale parameter over a mixture of two normal probability distributions. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only ...

  7. Compound probability distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_probability...

    In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.

  8. Inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-Wishart_distribution

    In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

  9. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    which is the probability of being in state and at times and + respectively given the observed sequence and parameters . The denominators of γ i ( t ) {\displaystyle \gamma _{i}(t)} and ξ i j ( t ) {\displaystyle \xi _{ij}(t)} are the same ; they represent the probability of making the observation Y {\displaystyle Y} given the parameters θ ...