Search results
Results from the WOW.Com Content Network
In contrast to the case of Voronoi cells defined using a distance which is a metric, in this case some of the Voronoi cells may be empty. A power diagram is a type of Voronoi diagram defined from a set of circles using the power distance; it can also be thought of as a weighted Voronoi diagram in which a weight defined from the radius of each ...
In weighted Voronoi diagrams, each site has a weight that influences the distance computation. The idea is that larger weights indicate more important sites, and such sites will get bigger Voronoi cells. In a multiplicatively weighted Voronoi diagram, the distance between a point and a site is divided by the (positive) weight of the site. [1]
The cell for a given circle C consists of all the points for which the power distance to C is smaller than the power distance to the other circles. The power diagram is a form of generalized Voronoi diagram, and coincides with the Voronoi diagram of the circle centers in the case that all the circles have equal radii. [1] [2] [3] [4]
The purple-shaded region is the new Voronoi cell, after inserting the point to be interpolated (black dot). The weights represent the intersection areas of the purple-cell with each of the seven surrounding cells. Natural-neighbor interpolation or Sibson interpolation is a method of spatial interpolation, developed by Robin Sibson. [1]
Centroidal Voronoi tessellations are useful in data compression, optimal quadrature, optimal quantization, clustering, and optimal mesh generation. [3]A weighted centroidal Voronoi diagrams is a CVT in which each centroid is weighted according to a certain function.
The general mathematical concept embodied in a Wigner–Seitz cell is more commonly called a Voronoi cell, and the partition of the plane into these cells for a given set of point sites is known as a Voronoi diagram. The construction process for the Wigner–Seitz cell of a hexagonal lattice. The cell may be chosen by first picking a lattice ...
Let be the Voronoi diagram for a set of sites , and let be the Voronoi cell of corresponding to a site . If V p {\displaystyle V_{p}} is bounded, then its positive pole is the vertex of the boundary of V p {\displaystyle V_{p}} that has maximal distance to the point p {\displaystyle p} .
The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.