enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  4. Timeline of geometry - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_geometry

    1829 – Bolyai, Gauss, and Lobachevsky invent hyperbolic non-Euclidean geometry, 1837 – Pierre Wantzel proves that doubling the cube and trisecting the angle are impossible with only a compass and straightedge, as well as the full completion of the problem of constructibility of regular polygons

  5. Daina Taimiņa - Wikipedia

    en.wikipedia.org/wiki/Daina_Taimiņa

    While attending a geometry workshop at Cornell University about teaching geometry for university professors in 1997, Taimiņa was presented with a fragile paper model of a hyperbolic plane, made by the professor in charge of the workshop, David Henderson (designed by geometer William Thurston. [4])

  6. Beltrami–Klein model - Wikipedia

    en.wikipedia.org/wiki/Beltrami–Klein_model

    Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection. In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit ...

  7. Metamathematics - Wikipedia

    en.wikipedia.org/wiki/Metamathematics

    The discovery of hyperbolic geometry had important philosophical consequences for metamathematics. Before its discovery there was just one geometry and mathematics; the idea that another geometry existed was considered improbable.

  8. Category:Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Hyperbolic_geometry

    Hyperbolic 3-manifold; Hyperbolic coordinates; Hyperbolic Dehn surgery; Hyperbolic functions; Hyperbolic group; Hyperbolic law of cosines; Hyperbolic manifold; Hyperbolic metric space; Hyperbolic motion; Hyperbolic space; Hyperbolic tree; Hyperbolic volume; Hyperbolization theorem; Hyperboloid model; Hypercycle (geometry) HyperRogue

  9. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups. The quotient space H 2 ‍ / ‍ Γ of the upper half-plane modulo the fundamental group is known as the Fuchsian model of the hyperbolic surface. The Poincaré half plane is also hyperbolic, but is simply ...