Search results
Results from the WOW.Com Content Network
Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
1829 – Bolyai, Gauss, and Lobachevsky invent hyperbolic non-Euclidean geometry, 1837 – Pierre Wantzel proves that doubling the cube and trisecting the angle are impossible with only a compass and straightedge, as well as the full completion of the problem of constructibility of regular polygons
While attending a geometry workshop at Cornell University about teaching geometry for university professors in 1997, Taimiņa was presented with a fragile paper model of a hyperbolic plane, made by the professor in charge of the workshop, David Henderson (designed by geometer William Thurston. [4])
Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection. In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit ...
The discovery of hyperbolic geometry had important philosophical consequences for metamathematics. Before its discovery there was just one geometry and mathematics; the idea that another geometry existed was considered improbable.
Hyperbolic 3-manifold; Hyperbolic coordinates; Hyperbolic Dehn surgery; Hyperbolic functions; Hyperbolic group; Hyperbolic law of cosines; Hyperbolic manifold; Hyperbolic metric space; Hyperbolic motion; Hyperbolic space; Hyperbolic tree; Hyperbolic volume; Hyperbolization theorem; Hyperboloid model; Hypercycle (geometry) HyperRogue
Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups. The quotient space H 2 / Γ of the upper half-plane modulo the fundamental group is known as the Fuchsian model of the hyperbolic surface. The Poincaré half plane is also hyperbolic, but is simply ...