enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Washout (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Washout_(aeronautics)

    (This can be described as aerodynamic wash-in.) Winglets also promote a greater bending moment at the wing root, possibly necessitating a heavier wing structure. Installation of winglets may necessitate greater aerodynamic washout in order to provide the required resistance to spinning, or to optimise the spanwise lift distribution.

  3. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

  4. Wingtip vortices - Wikipedia

    en.wikipedia.org/wiki/Wingtip_vortices

    Wingtip vortices are circular patterns of rotating air left behind a wing as it generates lift. [1]: 5.14 The name is a misnomer because the cores of the vortices are slightly inboard of the wing tips. [2]: 369 Wingtip vortices are sometimes named trailing or lift-induced vortices because they also occur at points other than at the wing tips.

  5. Glossary of aerospace engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_aerospace...

    Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft.

  6. Ground effect (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Ground_effect_(aerodynamics)

    This is caused primarily by the ground or water obstructing the creation of wingtip vortices and interrupting downwash behind the wing. [6] [7] A wing generates lift by deflecting the oncoming airmass (relative wind) downward. [8] The deflected or "turned" flow of air creates a resultant force on the wing in the opposite direction (Newton's 3rd ...

  7. Wing - Wikipedia

    en.wikipedia.org/wiki/Wing

    The word "wing" from the Old Norse vængr [1] for many centuries referred mainly to the foremost limbs of birds (in addition to the architectural aisle). But in recent centuries the word's meaning has extended to include lift producing appendages of insects, bats, pterosaurs, boomerangs, some sail boats and aircraft, or the airfoil on a race car.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    A wing of infinite span and uniform airfoil segment (or a 2D wing) would experience no induced drag. [11] The drag characteristics of a wing with infinite span can be simulated using an airfoil segment the width of a wind tunnel. [12] An increase in wingspan or a solution with a similar effect is one way to reduce induced drag.