Search results
Results from the WOW.Com Content Network
The thoracic duct drains into the left subclavian vein, [3] near its junction with the left internal jugular vein.It carries lymph (water and solutes) from the lymphatic system, as well as chylomicrons or chyle, formed in the intestines from dietary fat and lipids, allowing these to enter the bloodstream; the products of fats and lipids can then be carried by the bloodstream to the hepatic ...
In the neck, the jugular veins parallel the upward course of the carotid arteries and drain blood into the superior vena cava. The veins puncture the relevant dural sinus, piercing the arachnoid and dura mater as bridging veins that drain their contents into the sinus. [5] The deep venous system. The deep venous system is primarily composed of ...
3D model of cerebral veins. In human anatomy, the cerebral veins are blood vessels in the cerebral circulation which drain blood from the cerebrum of the human brain.They are divisible into external (superficial cerebral veins) and internal (internal cerebral veins) groups according to the outer or inner parts of the hemispheres they drain into.
These afferent vessels then drain into the subcapsular sinus. [1] The efferent vessels that bring lymph from the lymphatic organs to the nodes bringing the lymph to the right lymphatic duct or the thoracic duct, the largest lymph vessel in the body. These vessels drain into the right and left subclavian veins, respectively. There are far more ...
The left and right external jugular veins drain into the subclavian veins. The internal jugular veins join with the subclavian veins more medially to form the brachiocephalic veins. Finally, the left and right brachiocephalic veins join to form the superior vena cava, which delivers deoxygenated blood to the right atrium of the heart. [2]
The venous angle (also known as Pirogoff's angle and in Latin as angulus venosus) is the junction where the ipsilateral internal jugular vein and subclavian vein unite to form the ipsilateral brachiocephalic vein. [1] [2] The thoracic duct drains at the left venous angle, and the right lymphatic duct drains at the right
In humans, the cisterna chyli is located posterior to the abdominal aorta on the anterior aspect of the bodies of the first and second lumbar vertebrae (L1 and L2). There it forms the beginning of the primary lymph vessel, the thoracic duct, which transports lymph and chyle from the abdomen via the aortic opening of the diaphragm up to the junction of left subclavian vein and internal jugular ...
[8] [9] In subclavian steal syndrome, blood is "stolen" from the vertebral artery on the affected side to preserve blood flow to the upper limb. Subclavian steal syndrome results from a proximal stenosis (narrowing) of the subclavian artery, one of arteries originating off of the aortic arch. Subclavian steal syndrome has potential to affect ...