enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if f {\displaystyle f} is a holomorphic function , real-valued on the real line, which can be evaluated at points in the complex plane near x {\displaystyle x} , then there are stable methods.

  3. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    A well-known counterexample is the absolute value function f(x) = |x|, which is not differentiable at x = 0, but is symmetrically differentiable here with symmetric derivative 0. For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3]

  4. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    (Textbook, targeting advanced undergraduate and postgraduate students in mathematics, which also discusses numerical partial differential equations.) John Denholm Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester, 1991. ISBN 0-471-92990-5. (Textbook, slightly more demanding than the book by Iserles.)

  5. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    The method is based on finite differences where the differentiation operators exhibit summation-by-parts properties. Typically, these operators consist of differentiation matrices with central difference stencils in the interior with carefully chosen one-sided boundary stencils designed to mimic integration-by-parts in the discrete setting.

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [54] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [55]

  8. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.

  9. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i ...