Search results
Results from the WOW.Com Content Network
In this Erlang example, the higher-order function or_else/2 takes a list of functions (Fs) and argument (X). It evaluates the function F with the argument X as argument. If the function F returns false then the next function in Fs will be evaluated. If the function F returns {false, Y} then the next function in Fs with argument Y will be
defines a variable named array (or assigns a new value to an existing variable with the name array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1 (the initial value), increments with each step from the previous value by 2 (the increment value), and stops once it reaches (or is about to exceed) 9 ...
enum.reverse_each.reduce(&block) In Ruby 1.8.7+, can also pass a symbol representing a function instead of a block. enum is an Enumeration Please notice that these implementations of right folds are wrong for non-commutative &block (also initial value is put on wrong side). Rust: iterator.fold(initval, func) iterator.rev().fold(initval, func)
If m = n, then f is a function from R n to itself and the Jacobian matrix is a square matrix. We can then form its determinant, known as the Jacobian determinant. The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point.
In the formulation given above, the scalars x n are replaced by vectors x n and instead of dividing the function f(x n) by its derivative f ′ (x n) one instead has to left multiply the function F(x n) by the inverse of its k × k Jacobian matrix J F (x n). [20] [21] [22] This results in the expression
The Jordan block corresponding to λ is of the form λI + N, where N is a nilpotent matrix defined as N ij = δ i,j−1 (where δ is the Kronecker delta). The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function.
The postgame message of “sticking together” from Matt Eberflus following the Chicago Bears' Thanksgiving Day loss to the Detroit Lions reportedly did not go over well with members of the team.
The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.