Search results
Results from the WOW.Com Content Network
Cardiac excitation-contraction coupling (Cardiac EC coupling) describes the series of events, from the production of an electrical impulse (action potential) to the contraction of muscles in the heart. [1] This process is of vital importance as it allows for the heart to beat in a
Depolarization propagates through cardiac muscle very rapidly. Cells of the ventricles contract nearly simultaneously. The action potentials of cardiac muscle are unusually sustained. This prevents premature relaxation, maintaining initial contraction until the entire myocardium has had time to depolarize and contract. Absence of tetany.
Within the muscle tissue of animals and humans, contraction and relaxation of the muscle cells is a highly regulated and rhythmic process.In cardiomyocytes, or cardiac muscle cells, muscular contraction takes place due to movement at a structure referred to as the diad, sometimes spelled "dyad."
In a healthy heart all activities and rests during each individual cardiac cycle, or heartbeat, are initiated and orchestrated by signals of the heart's electrical conduction system, which is the "wiring" of the heart that carries electrical impulses throughout the body of cardiomyocytes, the specialized muscle cells of the heart.
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
Sinus node dysfunction also known as sick sinus syndrome is a group of irregular heartbeat conditions caused by faulty electrical signals of the heart. When the heart's sinoatrial node is defective, the heart's rhythms become abnormal—typically too slow or exhibiting pauses in its function or a combination, and very rarely faster than normal ...
Intercalated discs support synchronized contraction of cardiac tissue in a wave-like pattern so that the heart can work like a pump. [1] They occur at the Z line of the sarcomere and can be visualized easily when observing a longitudinal section of the tissue.
An increase in sympathetic stimulation to the heart increases contractility and heart rate. An increase in contractility tends to increase stroke volume and thus a secondary increase in preload. An increase in preload results in an increased force of contraction by Starling's law of the heart; this does not require a change in contractility.