Search results
Results from the WOW.Com Content Network
When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit—a black hole.
Simulated collision of two neutron stars. A stellar collision is the coming together of two stars [1] caused by stellar dynamics within a star cluster, or by the orbital decay of a binary star due to stellar mass loss or gravitational radiation, or by other mechanisms not yet well understood.
NGC 4993 was the site of GW170817, a collision of two neutron stars, the first astronomical event detected in both electromagnetic and gravitational radiation, a discovery given the Breakthrough of the Year award for 2017 by the journal Science.
Recently, researchers from the University of Copenhagen re-analyzed data from the first-ever detected kilonova—a massive explosion that occurs when two neutron stars collide, merge, and collapse ...
Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. [1] Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically. [1] Neutron capture plays a significant role in the cosmic ...
For the first time ever, humans have observed light and gravitational waves from a neutron star collision 130 million light years away. For the first time ever, humans have observed light and ...
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
When two neutron stars collide, a significant amount of neutron-rich matter may be ejected which then quickly forms heavy elements. Cosmic ray spallation is a process wherein cosmic rays impact nuclei and fragment them. It is a significant source of the lighter nuclei, particularly 3 He, 9 Be and 10,11 B, that are not created by stellar ...