enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    Irreversible adiabatic process: If the cylinder is a perfect insulator, the initial top-left state cannot be reached anymore after it is changed to the one on the top-right. Instead, the state on the bottom left is assumed when going back to the original pressure because energy is converted into heat.

  3. Gouy–Stodola theorem - Wikipedia

    en.wikipedia.org/wiki/Gouy–Stodola_theorem

    An irreversible process produces some work , which is less than . The lost work is then W l o s t = W r e v − W a c t u a l {\displaystyle W_{lost}=W_{rev}-W_{actual}} ; in other words, W l o s t {\displaystyle W_{lost}} is the work which was lost or not exploited during the process due to irreversibilities.

  4. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.

  5. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...

  6. List of adiabatic concepts - Wikipedia

    en.wikipedia.org/wiki/List_of_adiabatic_concepts

    Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. Notable examples are listed below.

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    Every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies taking part in the process is increased. In the limit, i.e. for reversible processes, the sum of the entropies remains unchanged. [42] [43] [44] Rather like Planck's statement is that of George Uhlenbeck and G. W. Ford for irreversible phenomena.

  8. Adiabatic accessibility - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_accessibility

    Lieb and Yngvason's definition of adiabatic accessibility is: A state is adiabatically accessible from a state , in symbols (pronounced X 'precedes' Y), if it is possible to transform into in such a way that the only net effect of the process on the surroundings is that a weight has been raised or lowered (or a spring is stretched/compressed ...

  9. Thermodynamic system - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_system

    In some cases, when analyzing a thermodynamic process, one can assume that each intermediate state in the process is at equilibrium. Such a process is called quasistatic. [4] For a process to be reversible, each step in the process must be reversible. For a step in a process to be reversible, the system must be in equilibrium throughout the step.