Search results
Results from the WOW.Com Content Network
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
It was the first calculator that could perform all four basic arithmetic operations. [3] Its intricate precision gearwork, however, was somewhat beyond the fabrication technology of the time; mechanical problems, in addition to a design flaw in the carry mechanism, prevented the machines from working reliably. [4] [5]
Photomath utilizes the camera of a user's smartphone or tablet to scan and identify mathematical problems. [4] Upon recognition, the app displays the steps to solve the problem. The app presents these steps through various methods and approaches, elucidating the problem-solving process in a step-by-step manner to educate users.
[1] [2] Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
The result is an equation with no fractions. The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth.
The continued fraction method is based on Dixon's factorization method. It uses convergents in the regular continued fraction expansion of , +. Since this is a quadratic irrational, the continued fraction must be periodic (unless n is square, in which case the factorization is obvious).
By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...