Search results
Results from the WOW.Com Content Network
The three plot lines show the total field strength (blue), radial (vertical) field component (magenta) and the horizontal (south to north) field component (yellow). Field strengths are given in microteslas and the geographic latitude is given in degrees. The field strength reaches up to around 60 microteslas at the poles.
Earth's_magnetic_field,_schematic.png (566 × 503 pixels, file size: 96 KB, MIME type: image/png) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The geomagnetic field is generated (and regenerated) as the conducting fluid of the Earth's mantle and core, driven by convection of heat from deeper in the interior, induces an electromotive force (EMF) with the existing magnetic field. This process is very similar to the way an electric generator generates a voltage.
The North geomagnetic pole (Ellesmere Island, Nunavut, Canada) actually represents the South pole of Earth's magnetic field, and conversely the South geomagnetic pole corresponds to the north pole of Earth's magnetic field (because opposite magnetic poles attract and the north end of a magnet, like a compass needle, points toward Earth's South ...
Magnetic declination map at sea-level for the year 2010 derived from WMM2010. The World Magnetic Model ( WMM ) is a large spatial-scale representation of the Earth's magnetic field. It was developed jointly by the US National Geophysical Data Center and the British Geological Survey .
The International Geomagnetic Reference Field (IGRF) is a standard mathematical description of the large-scale structure of the Earth's main magnetic field and its secular variation. It was created by fitting parameters of a mathematical model of the magnetic field to measured magnetic field data from surveys, observatories and satellites ...
According to the BBC, the "global map shows the variation in strength of the magnetic field after the Earth's dipole field has been removed (Earth's dipole field varies from 35,000 nano-Tesla (nT) at the Equator to 70,000 nT at the poles). After removal of the dipole field, the remaining variations in the field (few hundreds of nT) are due to ...
The spacing between field lines is an indicator of the relative strength of the magnetic field. Where magnetic field lines converge the field grows stronger, and where they diverge, weaker. Now, it can be shown that in the motion of gyrating particles, the "magnetic moment" μ = W ⊥ /B (or relativistically, p ⊥ 2 /2mγB) stays very nearly ...