Search results
Results from the WOW.Com Content Network
The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as g n, g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g 0, or simply g (which is also used for the variable local value).
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
The bite force of a 5.2 m (17 ft) saltwater crocodile [20] 18 kN The estimated bite force of a 6.1 m (20 ft) adult great white shark [21] 25 kN Approximate force applied by the motors of a Tesla Model S during maximal acceleration [22] 25.5 to 34.5 kN The estimated bite force of a large 6.7 m (22 ft) adult saltwater crocodile [23] 10 5 N 100 kN
In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems , g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [ 2 ]
This formulation is dependent on the objects causing the field. The field has units of acceleration; in SI, this is m/s 2. Gravitational fields are also conservative; that is, the work done by gravity from one position to another is path-independent. This has the consequence that there exists a gravitational potential field V(r) such that
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1] = 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The relative standard uncertainty is 2.2 × 10 −5.