enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.

  4. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    A value is represented as a decimal fraction times a ... Numbers expressible in decimal notation: 2 2 = 4; 2 2 2 = 2 ... and as of October 2024 the largest known ...

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Given the hexadecimal representation 3FD5 5555 5555 5555 16, Sign = 0 Exponent = 3FD 16 = 1021 Exponent Bias = 1023 (constant value; see above) Fraction = 5 5555 5555 5555 16 Value = 2 (Exponent − Exponent Bias) × 1.Fraction – Note that Fraction must not be converted to decimal here = 22 × (15 5555 5555 5555 16 × 2 −52) = 2 −54 ...

  6. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions (common in human-entered data, such as measurements or financial information) and binary (base-2) fractions. The advantage of decimal floating-point representation over decimal fixed-point and ...

  7. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    Smallest base which is not a perfect power (where generalized repunits can be factored algebraically) for which no generalized repunit primes are known. 196: Number expressible with two tetradecimal digits. 210: Smallest base such that all fractions ⁠ 1 / 2 ⁠ to ⁠ 1 / 10 ⁠ terminate. 225: Number expressible with two pentadecimal digits. 256

  8. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    For example, the smallest positive number that can be represented in binary64 is 2 −1074; contributions to the −1074 figure include the emin value −1022 and all but one of the 53 significand bits (2 −1022 − (53 − 1) = 2 −1074). Decimal digits is the precision of the format expressed in terms of an equivalent number of decimal digits.

  9. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.