Search results
Results from the WOW.Com Content Network
The system is described in Kendall's notation where the G denotes a general distribution for both interarrival times and service times and the 1 that the model has a single server. [3] [4] Different interarrival and service times are considered to be independent, and sometimes the model is denoted GI/GI/1 to emphasise this.
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
The Pollaczek–Khinchine formula gives the mean queue length and mean waiting time in the system. [ 9 ] [ 10 ] Recently, the Pollaczek–Khinchine formula has been extended to the case of infinite service moments, thanks to the use of Robinson's Non-Standard Analysis.
Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution F(x) in a G/G/1 queue. = ()Where K(x) is the distribution function of the random variable denoting the difference between the (k - 1)th customer's arrival and the inter-arrival time between (k - 1)th and kth customers.
Kingman's approximation states: () (+)where () is the mean waiting time, τ is the mean service time (i.e. μ = 1/τ is the service rate), λ is the mean arrival rate, ρ = λ/μ is the utilization, c a is the coefficient of variation for arrivals (that is the standard deviation of arrival times divided by the mean arrival time) and c s is the coefficient of variation for service times.
An M/M/1 queueing node. A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one ...
In 1957, Pollaczek studied the GI/G/1 using an integral equation. [16] John Kingman gave a formula for the mean waiting time in a G/G/1 queue, now known as Kingman's formula. [17] Leonard Kleinrock worked on the application of queueing theory to message switching in the early 1960s and packet switching in the early 1970s.
In queueing theory, a discipline within the mathematical theory of probability, a rational arrival process (RAP) is a mathematical model for the time between job arrivals to a system. It extends the concept of a Markov arrival process, allowing for dependent matrix-exponential distributed inter-arrival times. [1]