Search results
Results from the WOW.Com Content Network
These methods were based on the helix- or sheet-forming propensities of individual amino acids, sometimes coupled with rules for estimating the free energy of forming secondary structure elements. The first widely used techniques to predict protein secondary structure from the amino acid sequence were the Chou–Fasman method [ 17 ] [ 18 ] [ 19 ...
Ribbon diagrams, also known as Richardson diagrams, are 3D schematic representations of protein structure and are one of the most common methods of protein depiction used today. The ribbon depicts the general course and organization of the protein backbone in 3D and serves as a visual framework for hanging details of the entire atomic structure ...
The pitch of a helix is the height of one complete helix turn, measured parallel to the axis of the helix. A double helix consists of two (typically congruent) helices with the same axis, differing by a translation along the axis. [3] A circular helix (i.e. one with constant radius) has constant band curvature and constant torsion. The slope of ...
Three-dimensional structure [1] of an alpha helix in the protein crambin. An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is ...
The amino acids in a 3 10-helix are arranged in a right-handed helical structure. Each amino acid corresponds to a 120° turn in the helix (i.e., the helix has three residues per turn), and a translation of 2.0 Å (0.20 nm) along the helical axis, and has 10 atoms in the ring formed by making the hydrogen bond.
A β-helix is formed from repeating structural units consisting of two or three short β-strands linked by short loops. These units "stack" atop one another in a helical fashion so that successive repetitions of the same strand hydrogen-bond with each other in a parallel orientation. See the β-helix article for further information.
Such a clustering is alternatively described in the ABEGO system, where each letter stands for α (and 3 10) helix, right-handed β sheets (and extended structures), left-handed helixes, left-handed sheets, and finally unplottable cis peptide bonds sometimes seen with proline; it has been used in the classification of motifs [14] and more ...
Cephalic index viewed from above the head. The cephalic index or cranial index is a number obtained by taking the maximum width (biparietal diameter or BPD, side to side) of the head of an organism, multiplying it by 100 and then dividing it by their maximum length (occipitofrontal diameter or OFD, front to back).