Search results
Results from the WOW.Com Content Network
The magnetic field is generated by a feedback loop: current loops generate magnetic fields (Ampère's circuital law); a changing magnetic field generates an electric field (Faraday's law); and the electric and magnetic fields exert a force on the charges that are flowing in currents (the Lorentz force). [58]
Earth's_magnetic_field,_schematic.png (566 × 503 pixels, file size: 96 KB, MIME type: image/png) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
The spacing between field lines is an indicator of the relative strength of the magnetic field. Where magnetic field lines converge the field grows stronger, and where they diverge, weaker. Now, it can be shown that in the motion of gyrating particles, the "magnetic moment" μ = W ⊥ /B (or relativistically, p ⊥ 2 /2mγB) stays very nearly ...
The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind, the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells. For ...
This image shows magnetic declination, or the angle between magnetic and geographic north, according to the World Magnetic Model released in 2025. Red is magnetic north to the east of geographic ...
A wealth of new information about Earth’s inner core has surfaced in recent months. Scientists now have evidence that the planet’s innermost layer is changing shape.
The dense clusters of lines are within the Earth's core. [27] The magnetic field of the Earth, and of other planets that have magnetic fields, is generated by dynamo action in which convection of molten iron in the planetary core generates electric currents which in turn give rise to magnetic fields. [15]