Search results
Results from the WOW.Com Content Network
Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.
For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by
Derivation of the relativistic Doppler shift If an object emits a beam of light or radiation, the frequency, wavelength, and energy of that light or radiation will look different to a moving observer than to one at rest with respect to the emitter.
There are also many examples of conversion of relativistic kinetic energy into rest energy. In 1974, SLAC National Accelerator Laboratory accelerated electrons and positrons up to relativistic velocities, so that their relativistic energy γ m c 2 {\displaystyle \gamma mc^{2}} (i.e. the sum of their rest energy and kinetic energy) is ...
The fine structure energy corrections can be obtained by using perturbation theory.To perform this calculation one must add three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.
In the center of mass frame the kinetic energy is the lowest and the total energy becomes = ˙ + The coordinates x 1 and x 2 can be expressed as = = and in a similar way the energy E is related to the energies E 1 and E 2 that separately contain the kinetic energy of each body: = = ˙ + = = ˙ + = +
Despite historically it was invented as a single particle equation the Klein–Gordon equation cannot form the basis of a consistent quantum relativistic one-particle theory, any relativistic theory implies creation and annihilation of particles beyond a certain energy threshold.
The potential energy is taken to be zero, so that all energy is in the form of kinetic energy. The relationship between kinetic energy and momentum for massive non- relativistic particles is E = p 2 2 m {\displaystyle E={\frac {p^{2}}{2m}}}