Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Polynomial long division can be used to find the equation of the line that is tangent to the graph of the function defined by the polynomial P(x) at a particular point x = r. [3] If R ( x ) is the remainder of the division of P ( x ) by ( x – r ) 2 , then the equation of the tangent line at x = r to the graph of the function y = P ( x ) is y ...
For algorithms describing how to calculate the remainder, see Division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder . [ 2 ] The integer a is either a multiple of d , or lies in the interval between consecutive multiples of d , namely, q ⋅ d and ( q + 1) d (for positive q ).
Tangent line at (a, f(a)) In mathematics , a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function ). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
Under stronger regularity assumptions on f there are several precise formulas for the remainder term R k of the Taylor polynomial, the most common ones being the following. Mean-value forms of the remainder — Let f : R → R be k + 1 times differentiable on the open interval with f ( k ) continuous on the closed interval between a {\textstyle ...
After each step k of the Euclidean algorithm, the norm of the remainder f(r k) is smaller than the norm of the preceding remainder, f(r k−1). Since the norm is a nonnegative integer and decreases with every step, the Euclidean algorithm for Gaussian integers ends in a finite number of steps. [ 144 ]