Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
The key enzymes necessary for releasing energy during oxidation of ammonia to nitrite are ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). The first is a transmembrane copper protein which catalyzes the oxidation of ammonia to hydroxylamine ( 1.1 ) taking two electrons directly from the quinone pool.
Enzyme structures unfold when heated or exposed to chemical denaturants and this disruption to the structure typically causes a loss of activity. [27] Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by ...
Enzyme inhibitors are molecules that reduce or abolish enzyme activity, while enzyme activators are molecules that increase the catalytic rate of enzymes. These interactions can be either reversible (i.e., removal of the inhibitor restores enzyme activity) or irreversible (i.e., the inhibitor permanently inactivates the enzyme).
Enzymes NapAB, NirS, NirK and NosZ are located in the periplasm, a wide space bordered by the cytoplasmic and the outer membrane in Gram-negative bacteria. [16] A variety of environmental factors can influence the rate of denitrification on an ecosystem-wide scale. For example, temperature and pH have been observed to impact denitrification rates.
RuBisCO is important biologically because it catalyzes the primary chemical reaction by which inorganic carbon enters the biosphere.While many autotrophic bacteria and archaea fix carbon via the reductive acetyl CoA pathway, the 3-hydroxypropionate cycle, or the reverse Krebs cycle, these pathways are relatively small contributors to global carbon fixation compared to that catalyzed by RuBisCO.
Alcohol dehydrogenase activity varies between men and women, between young and old, and among populations from different areas of the world. For example, young women are unable to process alcohol at the same rate as young men because they do not express the alcohol dehydrogenase as highly, although the inverse is true among the middle-aged. [37]
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis: