enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    The order of reaction is a number which quantifies the degree to which the rate of a chemical reaction depends on concentrations of the reactants. [2] In other words, the order of reaction is the exponent to which the concentration of a particular reactant is raised. [2]

  3. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  4. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  5. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring , Meredith Gwynne Evans and Michael Polanyi .

  6. Continuous stirred-tank reactor - Wikipedia

    en.wikipedia.org/wiki/Continuous_stirred-tank...

    n th-order reaction (r = kC A n), where k is the reaction rate constant, C A is the concentration of species A, and n is the order of the reaction; isothermal conditions, or constant temperature (k is constant) single, irreversible reaction (ν A = −1) All reactant A is converted to products via chemical reaction; N A = C A V

  7. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    In first-order ordinary equations, the Runge-Kutta method uses a mathematical model that represents the relationship between the temperature and the rate of reaction. It is worth it to calculate the rate of reaction at different temperatures for different concentrations.

  8. Pre-exponential factor - Wikipedia

    en.wikipedia.org/wiki/Pre-exponential_factor

    The units of the pre-exponential factor A are identical to those of the rate constant and will vary depending on the order of the reaction. For a first-order reaction, it has units of s −1. For that reason, it is often called frequency factor.

  9. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...