Search results
Results from the WOW.Com Content Network
The saturation with respect to water cannot be measured much below –50 °C, so manufacturers should use one of the following expressions for calculating saturation vapour pressure relative to water at the lowest temperatures – Wexler (1976, 1977), [1] [2] reported by Flatau et al. (1992)., [3] Hyland and Wexler (1983) or Sonntag (1994 ...
where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
The dew point temperature equals the air temperature when the air is saturated with water; in all other cases the dew point will be less than the air temperature. [ 6 ] : 129 In technical terms, the dew point is the temperature at which the water vapor in a sample of air at constant barometric pressure condenses into liquid water at the same ...
This assumes a temperature-independent heat of vaporization. The Antoine equation allows an improved, but still inexact description of the change of the heat of vaporization with the temperature. The Antoine equation can also be transformed in a temperature-explicit form with simple algebraic manipulations:
A saturated liquid contains as much thermal energy as it can without boiling (or conversely a saturated vapor contains as little thermal energy as it can without condensing). Saturation temperature means boiling point. The saturation temperature is the temperature for a corresponding saturation pressure at which a liquid boils into its vapor phase.
The Lee–Kesler method [1] allows the estimation of the saturated vapor pressure at a given temperature for all components for which the critical pressure P c, the critical temperature T c, and the acentric factor ω are known.
According to the American Meteorological Society Glossary of Meteorology, saturation vapor pressure properly refers to the equilibrium vapor pressure of water above a flat surface of liquid water or solid ice, and is a function only of temperature and whether the condensed phase is liquid or solid. [17]