Search results
Results from the WOW.Com Content Network
Typically, the stated rotation period for a giant planet (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation of the planet's magnetic field. For objects that are not spherically symmetrical , the rotation period is, in general, not fixed, even in the absence of gravitational or tidal forces.
Another common form of resonance in the Solar System is spin–orbit resonance, where the rotation period (the time it takes the planet or moon to rotate once about its axis) has a simple numerical relationship with its orbital period. An example is the Moon, which is in a 1:1 spin–orbit resonance that keeps its far side away from
Venus rotates clockwise, and Uranus has been knocked on its side and rotates almost perpendicular to the rest of the Solar System. The ecliptic remains within 3° of the invariable plane over five million years, [2] but is now inclined about 23.44° to Earth's celestial equator used for the coordinates of poles. This large inclination means ...
The 3:4, 3:5, 4:7 and 2:5 resonances are less populated. [150] Neptune has a number of known trojan objects occupying both the Sun–Neptune L 4 and L 5 Lagrangian points—gravitationally stable regions leading and trailing Neptune in its orbit, respectively. [151] Neptune trojans can be viewed as being in a 1:1 resonance with Neptune.
Meteoroids in a retrograde orbit around the Sun hit the Earth with a faster relative speed than prograde meteoroids and tend to burn up in the atmosphere and are more likely to hit the side of the Earth facing away from the Sun (i.e. at night) whereas the prograde meteoroids have slower closing speeds and more often land as meteorites and tend ...
The timeline of discovery of Solar System planets and their natural satellites charts the progress of the discovery of new bodies over history. Each object is listed in chronological order of its discovery (multiple dates occur when the moments of imaging, observation, and publication differ), identified through its various designations (including temporary and permanent schemes), and the ...
Newton defined the force acting on a planet to be the product of its mass and the acceleration (see Newton's laws of motion). So: Every planet is attracted towards the Sun. The force acting on a planet is directly proportional to the mass of the planet and is inversely proportional to the square of its distance from the Sun.
The new planet, at first called "Le Verrier" by François Arago, received by consensus the neutral name of Neptune. Its mathematical prediction was a great intellectual feat, but it showed also that Newton's law of gravitation, which Airy had almost called in question, prevailed even at the limits of the Solar System. [20]