enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    The final result, ⁠ 4 / 3 ⁠, is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets = Which method is faster "by hand" depends on the ...

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In the base ten number system, integer powers of 10 are written as the digit 1 followed or preceded by a number of zeroes determined by the sign and magnitude of the exponent. For example, 10 3 = 1000 and 104 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers.

  4. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Visualisation of powers of 10 from one to 1 trillion. In mathematics, a power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ...

  5. 1024 (number) - Wikipedia

    en.wikipedia.org/wiki/1024_(number)

    1024 is a power of two: 2 10 (2 to the tenth power). [1] It is the nearest power of two from decimal 1000 and senary 10000 6 (decimal 1296). It is the 64th quarter square. [2] [3] 1024 is the smallest number with exactly 11 divisors (but there are smaller numbers with more than 11 divisors; e.g., 60 has 12 divisors) (sequence A005179 in the OEIS).

  6. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...

  7. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  8. Powerful number - Wikipedia

    en.wikipedia.org/wiki/Powerful_number

    10 = 13 33 7 18 = 19 2 − 7 3 = 3 5 − 15 2. It had been conjectured that 6 cannot be so represented, and Golomb conjectured that there are infinitely many integers which cannot be represented as a difference between two powerful numbers. However, Narkiewicz showed that 6 can be so represented in infinitely many ways such as 6 = 5 4 7 3 ...

  9. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Repeat the procedure, since the number is greater than 7. Now, 4 becomes 5, which must be added to 6. That is 11. Repeat the procedure one more time: 1 becomes 3, which is added to the second digit (1): 3 + 1 = 4. Now we have a number smaller than 7, and this number (4) is the remainder of dividing 186/7.