Search results
Results from the WOW.Com Content Network
A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day , which is one complete rotation in relation to distant stars [ 1 ] and is the basis of sidereal time.
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
Five synodic periods of Venus is almost exactly 13 sidereal Venus years and 8 Earth years, and consequently the longitudes and distances almost repeat. [ 5 ] The 3.4° inclination of Venus's orbit is great enough to usually prevent the inferior planet from passing directly between the Sun and Earth at inferior conjunction.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
Viewed from the same location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal rotation period). This is similar to how the time kept by a sundial can be used to find the location of the Sun
An example of this related period description is the repeated cycles for celestial bodies as observed from the Earth's surface, the synodic period, applying to the elapsed time where planets return to the same kind of phenomenon or location — for example, when any planet returns between its consecutive observed conjunctions with or ...
The birth chart you have memorized is likely rooted in tropical astrology. But there's another system, too, called sidereal astrology. An astrologer explains.
The period depends on the relative angular velocity of Earth and the planet, as seen from the Sun. The time it takes to complete this period is the synodic period of the planet. Let T be the period (for example the time between two greatest eastern elongations), ω be the relative angular velocity, ω e Earth's angular velocity and ω p the ...