Search results
Results from the WOW.Com Content Network
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
For example, 50 g of zinc will react with oxygen to produce 62.24 g of zinc oxide, implying that the zinc has reacted with 12.24 g of oxygen (from the Law of conservation of mass): the equivalent weight of zinc is the mass which will react with eight grams of oxygen, hence 50 g × 8 g/12.24 g = 32.7 g.
The gram per cubic centimetre is a unit of density in the CGS system, and is commonly used in chemistry. It is defined by dividing the CGS unit of mass, the gram, by the CGS unit of volume, the cubic centimetre. The official SI symbols are g/cm 3, g·cm −3, or g cm −3. It is equivalent to the units gram per millilitre (g/mL) and kilogram ...
An imperial fluid ounce is defined in British law as exactly 28.4130625 millilitres, [15] while a US customary fluid ounce is exactly 29.5735295625 mL, [16] and a US food labelling fluid ounce is 30 mL. [17] The fluid ounce is sometimes referred to simply as an "ounce" in contexts where its use is implicit, such as bartending.
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...
An imperial fluid ounce is 1 ⁄ 20 of an imperial pint, 1 ⁄ 160 of an imperial gallon or exactly 28.4130625 mL. A US customary fluid ounce is 1 ⁄ 16 of a US liquid pint and 1 ⁄ 128 of a US liquid gallon or exactly 29.5735295625 mL, making it about 4.08% larger than the imperial fluid ounce. A US food labeling fluid ounce is exactly 30 mL.
The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the detonation pressure. The pressure can be calculated using Chapman-Jouguet theory from the velocity and density.
Liquid oxygen is so magnetic that, in laboratory demonstrations, a bridge of liquid oxygen may be supported against its own weight between the poles of a powerful magnet. [37] [c] Singlet oxygen is a name given to several higher-energy species of molecular O 2 in which all the electron spins are paired.