enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    The top row is a series of plots using the escape time algorithm for 10000, 1000 and 100 maximum iterations per pixel respectively. The bottom row uses the same maximum iteration values but utilizes the histogram coloring method. Notice how little the coloring changes per different maximum iteration counts for the histogram coloring method plots.

  3. Matplotlib - Wikipedia

    en.wikipedia.org/wiki/Matplotlib

    Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.

  4. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. Histograms are sometimes confused with bar charts. In a histogram, each bin is for a different range of values, so altogether the histogram ...

  5. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The Lagrange constraints that () is properly normalized and has the specified mean and variance are satisfied if and only if , , and are chosen so that = (). The entropy of a normal distribution X ∼ N ( μ , σ 2 ) {\textstyle X\sim N(\mu ,\sigma ^{2})} is equal to H ( X ) = 1 2 ( 1 + ln ⁡ 2 σ 2 π ) , {\displaystyle H(X)={\tfrac {1}{2}}(1 ...

  7. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]

  8. Radial distribution function - Wikipedia

    en.wikipedia.org/wiki/Radial_distribution_function

    The histogram is then normalized with respect to an ideal gas, where particle histograms are completely uncorrelated. For three dimensions, this normalization is the number density of the system ( ρ ) {\displaystyle (\rho )} multiplied by the volume of the spherical shell, which symbolically can be expressed as ρ 4 π r 2 d r {\displaystyle ...

  9. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional normal distribution to higher dimensions.