enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.

  3. Polynomial expansion - Wikipedia

    en.wikipedia.org/wiki/Polynomial_expansion

    In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...

  4. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).

  5. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  6. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    For the folded general continued fractions of both expressions, the rate convergence μ = (3 − √ 8) 2 = 17 − √ 288 ≈ 0.02943725, hence ⁠ 1 / μ ⁠ = (3 + √ 8) 2 = 17 + √ 288 ≈ 33.97056, whose common logarithm is 1.531... ≈ ⁠ 26 / 17 ⁠ > ⁠ 3 / 2 ⁠, thus adding at least three digits per two terms. This is because the ...

  7. Algebraic fraction - Wikipedia

    en.wikipedia.org/wiki/Algebraic_fraction

    A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus 3 x x 2 + 2 x − 3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 23 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because the numerator contains a square root function.

  8. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    This is useful in solving such recurrences, since by using partial fraction decomposition we can write any proper rational function as a sum of factors of the form 1 / (ax + b) and expand these as geometric series, giving an explicit formula for the Taylor coefficients; this is the method of generating functions.

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    x 2 − 5x − 6 = (12 x + 12) (⁠ 1 / 12 ⁠ x − ⁠ 1 / 2 ⁠) + 0 Since 12 x + 12 is the last nonzero remainder, it is a GCD of the original polynomials, and the monic GCD is x + 1 . In this example, it is not difficult to avoid introducing denominators by factoring out 12 before the second step.

  1. Related searches expand and simplify x+3 x+5 4 times 2 3 fraction copy paste

    expand and simplify x+3 x+5 4 times 2 3 fraction copy paste generator4 times 2/3 as a fraction