Search results
Results from the WOW.Com Content Network
Einstein himself considered the introduction of the cosmological constant in his 1917 paper founding cosmology as a "blunder". [3] The theory of general relativity predicted an expanding or contracting universe, but Einstein wanted a static universe which is an unchanging three-dimensional sphere, like the surface of a three-dimensional ball in four dimensions.
In theoretical physics, the problem of time is a conceptual conflict between quantum mechanics and general relativity. Quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative. [1] [2] This problem raises the question of what time really is in a physical ...
Quantum entanglement can be defined only within the formalism of quantum mechanics, i.e., it is a model-dependent property. In contrast, nonlocality refers to the impossibility of a description of observed statistics in terms of a local hidden variable model, so it is independent of the physical model used to describe the experiment.
Quantum chaos is the field of physics attempting to bridge the theories of quantum mechanics and classical mechanics. The figure shows the main ideas running in each direction. Quantum chaos is a branch of physics focused on how chaotic classical dynamical systems can be described in terms of quantum theory.
Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.
Quantum mechanics, at least in the Copenhagen interpretation, appeared to allow action at a distance, the ability for two separated objects to communicate at speeds greater than light. By 1928, the consensus was that Einstein had lost the debate, and even his closest allies during the Fifth Solvay Conference, for example Louis de Broglie ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
A prominent example is an explanation for the color of gold: due to relativistic effects, it is not silvery like most other metals. [1] The term relativistic effects was developed in light of the history of quantum mechanics. Initially, quantum mechanics was developed without considering the theory of relativity. [2]