enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    Since is a complete metric space, the Cauchy criterion can be used to give an equivalent alternative formulation for uniform convergence: () converges uniformly on (in the previous sense) if and only if for every >, there exists a natural number such that

  3. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.

  4. Uniformly Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Uniformly_Cauchy_sequence

    Nevertheless, if the metric space M is complete, then any pointwise Cauchy sequence converges pointwise to a function from S to M. Similarly, any uniformly Cauchy sequence will tend uniformly to such a function. The uniform Cauchy property is frequently used when the S is not just a set, but a topological space, and M is a complete metric space ...

  5. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends only on the terms of the sequence itself, as opposed to the definition of convergence, which uses the limit value as well as the terms.

  6. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    1.12 Cauchy's convergence test. 1.13 Stolz–Cesàro theorem. 1.14 Weierstrass M-test. ... This is also known as the nth root test or Cauchy's criterion. Let

  7. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  8. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely.It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.

  9. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .