enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    In particle accelerators, velocity can be very high (close to the speed of light in vacuum) so the same rest mass now exerts greater inertia (relativistic mass) thereby requiring greater force for the same centripetal acceleration, so the equation becomes: [11] = where = is the Lorentz factor.

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The net acceleration may be resolved into two components: tangential acceleration and centripetal acceleration. Unlike tangential acceleration, centripetal acceleration is present in both uniform and non-uniform circular motion. This diagram shows the normal force (n) pointing in other directions rather than opposite to the weight force.

  4. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    Transverse acceleration (perpendicular to velocity) causes a change in direction. If it is constant in magnitude and changing in direction with the velocity, circular motion ensues. Taking two derivatives of the particle's coordinates concerning time gives the centripetal acceleration = =

  5. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    An oscillating pendulum, with velocity and acceleration marked. It experiences both tangential and centripetal acceleration. Components of acceleration for a curved motion. The tangential component a t is due to the change in speed of traversal, and points along the curve in the direction of the velocity vector (or in the opposite direction).

  7. Banked turn - Wikipedia

    en.wikipedia.org/wiki/Banked_turn

    Upper panel: Ball on a banked circular track moving with constant speed ; Lower panel: Forces on the ball.The resultant or net force on the ball found by vector addition of the normal force exerted by the road and vertical force due to gravity must equal the required force for centripetal acceleration dictated by the need to travel a circular path.

  8. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Newton's law of motion for a particle of mass m written in vector form is: = , where F is the vector sum of the physical forces applied to the particle and a is the absolute acceleration (that is, acceleration in an inertial frame) of the particle, given by: = , where r is the position vector of the particle (not to be confused with radius, as ...

  9. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    The escape velocity at a given height is times the speed in a circular orbit at the same height, (compare this with the velocity equation in circular orbit). This corresponds to the fact that the potential energy with respect to infinity of an object in such an orbit is minus two times its kinetic energy, while to escape the sum of potential ...