enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Classical central-force problem - Wikipedia

    en.wikipedia.org/.../Classical_central-force_problem

    The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...

  3. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    Paul Appell pointed out a physical interpretation of the imaginary period: [16] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of the other.

  4. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...

  5. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    [56] [57] Procedurally, the magnitude of the reference angle for a given angle may determined by taking the angle's magnitude modulo ⁠ 1 / 2 ⁠ turn, 180°, or π radians, then stopping if the angle is acute, otherwise taking the supplementary angle, 180° minus the reduced magnitude. For example, an angle of 30 degrees is already a ...

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Using the spherical coordinates (r, θ, φ) as commonly used in physics (ISO 80000-2:2019 convention), where r is the radial distance to origin, θ is polar angle (also known as colatitude, zenith angle, normal angle, or inclination angle), and φ is the azimuthal angle, the Lagrangian for a central potential is = (˙ + ˙ + ⁡ ˙) ().

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...

  8. Angular displacement - Wikipedia

    en.wikipedia.org/wiki/Angular_displacement

    In three dimensions, angular displacement is an entity with a direction and a magnitude. The direction specifies the axis of rotation, which always exists by virtue of the Euler's rotation theorem; the magnitude specifies the rotation in radians about that axis (using the right-hand rule to determine direction). This entity is called an axis-angle.

  9. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    The inverse square law behind the Kepler problem is the most important central force law. [1]: 92 The Kepler problem is important in celestial mechanics, since Newtonian gravity obeys an inverse square law. Examples include a satellite moving about a planet, a planet about its sun, or two binary stars about each other.