enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Importance sampling - Wikipedia

    en.wikipedia.org/wiki/Importance_sampling

    Importance sampling is a variance reduction technique that can be used in the Monte Carlo method.The idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others.

  3. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  4. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    Sawilowsky [56] distinguishes between a simulation, a Monte Carlo method, and a Monte Carlo simulation: a simulation is a fictitious representation of reality, a Monte Carlo method is a technique that can be used to solve a mathematical or statistical problem, and a Monte Carlo simulation uses repeated sampling to obtain the statistical ...

  5. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Within statistics, oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. the ratio between the different classes/categories represented). These terms are used both in statistical sampling, survey design methodology and in machine learning.

  6. Theoretical sampling - Wikipedia

    en.wikipedia.org/wiki/Theoretical_sampling

    In theoretical sampling the researcher manipulates or changes the theory, sampling activities as well as the analysis during the course of the research. Flexibility occurs in this style of sampling when the researchers want to increase the sample size due to new factors that arise during the research.

  7. Umbrella sampling - Wikipedia

    en.wikipedia.org/wiki/Umbrella_sampling

    Series of umbrella sampling simulations can be analyzed using the weighted histogram analysis method (WHAM) [2] or its generalization. [3] WHAM can be derived using the maximum likelihood method. Subtleties exist in deciding the most computationally efficient way to apply the umbrella sampling method, as described in Frenkel and Smit's book ...

  8. Control variates - Wikipedia

    en.wikipedia.org/wiki/Control_variates

    Let the unknown parameter of interest be , and assume we have a statistic such that the expected value of m is μ: [] =, i.e. m is an unbiased estimator for μ. Suppose we calculate another statistic such that [] = is a known value.

  9. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...