Search results
Results from the WOW.Com Content Network
Figure 1: Zindler curve. Any of the chords of equal length cuts the curve and the enclosed area into halves. Figure 2: Examples of Zindler curves with a = 8 (blue), a = 16 (green) and a = 24 (red). A Zindler curve is a simple closed plane curve with the defining property that: (L) All chords which cut the curve length into halves have the same ...
A structural piece of stone, wood or metal jutting from a wall to carry a superincumbent weight. A corbie gable from Zaltbommel Corbiesteps A series of steps along the slopes of a gable. [17] Also called crow-steps. A gable featuring corbiesteps is known as a corbie gable, crow-step gable, or stepped gable. [18] Corinthian order
Two Dimensional Curves; Visual Dictionary of Special Plane Curves; Curves and Surfaces Index (Harvey Mudd College) National Curve Bank; An elementary treatise on cubic and quartic curves by Alfred Barnard Basset (1901) online at Google Books
An oval (from Latin ovum 'egg') is a closed curve in a plane which resembles the outline of an egg. The term is not very specific, but in some areas (projective geometry, technical drawing, etc.) it is given a more precise definition, which may include either one or two axes of symmetry of an ellipse. In common English, the term is used in a ...
Piecewise-circular curves (1 C, 16 P) Pages in category "Plane curves" The following 45 pages are in this category, out of 45 total.
A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.
Sierpiński curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wacław Sierpiński, which in the limit completely fill the unit square: thus their limit curve, also called the Sierpiński curve, is an example of a space-filling curve.
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]